Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Trends Ecol Evol ; 39(5): 409-412, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38508924

RESUMEN

Inclusivity is fundamental to progress in understanding and addressing the global phenomena of biological invasions because inclusivity fosters a breadth of perspectives, knowledge, and solutions. Here, we report on how the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) assessment on invasive alien species (IAS) prioritized inclusivity, the benefits of this approach, and the remaining challenges.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Especies Introducidas , Conservación de los Recursos Naturales/métodos , Ecosistema , Política Ambiental
2.
Sci Data ; 11(1): 225, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38383609

RESUMEN

Alpine grassland vegetation supports globally important biodiversity and ecosystems that are increasingly threatened by climate warming and other environmental changes. Trait-based approaches can support understanding of vegetation responses to global change drivers and consequences for ecosystem functioning. In six sites along a 1314 m elevational gradient in Puna grasslands in the Peruvian Andes, we collected datasets on vascular plant composition, plant functional traits, biomass, ecosystem fluxes, and climate data over three years. The data were collected in the wet and dry season and from plots with different fire histories. We selected traits associated with plant resource use, growth, and life history strategies (leaf area, leaf dry/wet mass, leaf thickness, specific leaf area, leaf dry matter content, leaf C, N, P content, C and N isotopes). The trait dataset contains 3,665 plant records from 145 taxa, 54,036 trait measurements (increasing the trait data coverage of the regional flora by 420%) covering 14 traits and 121 plant taxa (ca. 40% of which have no previous publicly available trait data) across 33 families.


Asunto(s)
Ecosistema , Pradera , Plantas , Biodiversidad , Perú , Clima , Altitud , Incendios
3.
Ecol Evol ; 14(2): e11009, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38352204

RESUMEN

One of the ways in which plants are responding to climate change is by shifting their ranges to higher elevations. Early life-history stages are major bottlenecks for species' range shifts, and variation in seedling emergence and establishment success can therefore be important determinants of species' ability to establish at higher elevations. Previous studies have found that warming per se tends to not only increase seedling establishment in alpine climates but it also increases plant productivity, which could limit establishment success through increased competition for light. Here we disentangle the relative importance of several climate-related abiotic and biotic factors on sub-alpine species' seedling emergence and survival in the alpine. Specifically, we test how temperature, precipitation and competition from neighbouring vegetation impacts establishment, and also whether species' functional traits, or strategies impact their ability to colonise alpine locations. We found that our six sub-alpine study species were all able to recruit from seed in alpine locations under the extant alpine climate, but their emergence was limited by competition from neighbouring vegetation. This indicates that biotic interactions can hinder the range shifts expected as a result of climate warming. Species with a resource conservative strategy had higher emergence in the extant alpine climate than species with a resource acquisitive strategy, and they were largely unaffected by changes in temperature. The resource acquisitive species, in contrast, had faster emergence under warming, especially when they were released from competition from neighbouring vegetation. Our results indicate that competition from the established vegetation is limiting the spread of lowland species into the alpine, and as the climate continues to warm, species with resource acquisitive traits might gain an advantage.

4.
Sci Data ; 10(1): 578, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37666874

RESUMEN

The Arctic is warming at a rate four times the global average, while also being exposed to other global environmental changes, resulting in widespread vegetation and ecosystem change. Integrating functional trait-based approaches with multi-level vegetation, ecosystem, and landscape data enables a holistic understanding of the drivers and consequences of these changes. In two High Arctic study systems near Longyearbyen, Svalbard, a 20-year ITEX warming experiment and elevational gradients with and without nutrient input from nesting seabirds, we collected data on vegetation composition and structure, plant functional traits, ecosystem fluxes, multispectral remote sensing, and microclimate. The dataset contains 1,962 plant records and 16,160 trait measurements from 34 vascular plant taxa, for 9 of which these are the first published trait data. By integrating these comprehensive data, we bridge knowledge gaps and expand trait data coverage, including on intraspecific trait variation. These data can offer insights into ecosystem functioning and provide baselines to assess climate and environmental change impacts. Such knowledge is crucial for effective conservation and management in these vulnerable regions.


Asunto(s)
Clima , Ecosistema , Animales , Aves , Conocimiento , Svalbard
5.
Ecol Evol ; 13(7): e10199, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37408632

RESUMEN

The coastal heathlands of Northwest Europe are highly valued cultural landscapes, that are critically endangered due to land use and climatic changes, such as increased frequency and severity of drought events. Our study is the first to assess how the germination and early seedling growth of Calluna vulgaris respond to drought. In a factorial design field experiment, we exposed maternal plants to three in-situ drought treatments (control, 60%, 90% roof coverage), across three successional stages after fire (pioneer, building, mature), and two regions (60°N, 65°N). Seeds from 540 plants within the experiment were, weighed, and exposed to five water potentials, ranging from -0.25 to -1.7 MPa, in a growth chamber experiment. We recorded germination (percentage, rate), seedling growth (above- vs. belowground allocation), and seedling functional traits (specific leaf area [SLA], specific root length [SRL]). Overall variation in germination between regions, successional stages, and maternal drought treatments was largely mediated by variation in seed mass. Plants from the northernmost region had higher seed mass and germination percentages. This is indicative of higher investment in seeds, likely linked to the populations' absence of vegetative root sprouting. Seeds from the mature successional stage germinated to lower final percentages than those from earlier successional stages, especially when the maternal plants had been exposed to drought (60% and 90% roof coverage). Exposure to reduced water availability decreased germination percentage and increased the time to 50% germination. Seedlings fully developed in the range -0.25 to -0.7 MPa, with increased root:shoot and lower SRL during reduced water availability, suggesting a resource-conservative response to drought during the early stages of development. Our results thus suggest a sensitivity to drought during the germination and seedling life-history stages that may reduce Calluna's ability to re-establish from seeds as the incidence and severity of droughts are projected to increase under future climates.

6.
Glob Chang Biol ; 29(15): 4440-4452, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37303068

RESUMEN

Dynamic Global Vegetation Models (DGVMs) provide a state-of-the-art process-based approach to study the complex interplay between vegetation and its physical environment. For example, they help to predict how terrestrial plants interact with climate, soils, disturbance and competition for resources. We argue that there is untapped potential for the use of DGVMs in ecological and ecophysiological research. One fundamental barrier to realize this potential is that many researchers with relevant expertize (ecology, plant physiology, soil science, etc.) lack access to the technical resources or awareness of the research potential of DGVMs. Here we present the Land Sites Platform (LSP): new software that facilitates single-site simulations with the Functionally Assembled Terrestrial Ecosystem Simulator, an advanced DGVM coupled with the Community Land Model. The LSP includes a Graphical User Interface and an Application Programming Interface, which improve the user experience and lower the technical thresholds for installing these model architectures and setting up model experiments. The software is distributed via version-controlled containers; researchers and students can run simulations directly on their personal computers or servers, with relatively low hardware requirements, and on different operating systems. Version 1.0 of the LSP supports site-level simulations. We provide input data for 20 established geo-ecological observation sites in Norway and workflows to add generic sites from public global datasets. The LSP makes standard model experiments with default data easily achievable (e.g., for educational or introductory purposes) while retaining flexibility for more advanced scientific uses. We further provide tools to visualize the model input and output, including simple examples to relate predictions to local observations. The LSP improves access to land surface and DGVM modelling as a building block of community cyberinfrastructure that may inspire new avenues for mechanistic ecosystem research across disciplines.


Asunto(s)
Clima , Ecosistema , Humanos , Fenómenos Fisiológicos de las Plantas , Programas Informáticos , Plantas
7.
Proc Biol Sci ; 290(2001): 20230344, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37357858

RESUMEN

Ecological theory posits that temporal stability patterns in plant populations are associated with differences in species' ecological strategies. However, empirical evidence is lacking about which traits, or trade-offs, underlie species stability, especially across different biomes. We compiled a worldwide collection of long-term permanent vegetation records (greater than 7000 plots from 78 datasets) from a large range of habitats which we combined with existing trait databases. We tested whether the observed inter-annual variability in species abundance (coefficient of variation) was related to multiple individual traits. We found that populations with greater leaf dry matter content and seed mass were more stable over time. Despite the variability explained by these traits being low, their effect was consistent across different datasets. Other traits played a significant, albeit weaker, role in species stability, and the inclusion of multi-variate axes or phylogeny did not substantially modify nor improve predictions. These results provide empirical evidence and highlight the relevance of specific ecological trade-offs, i.e. in different resource-use and dispersal strategies, for plant populations stability across multiple biomes. Further research is, however, necessary to integrate and evaluate the role of other specific traits, often not available in databases, and intraspecific trait variability in modulating species stability.


Asunto(s)
Ecosistema , Plantas , Filogenia , Semillas , Fenotipo , Hojas de la Planta
8.
Ecol Evol ; 13(4): e10023, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37122770

RESUMEN

Ecology & Evolution has published its first Registered Report and offers the perspective of the editor, author, and student on the publication process.

9.
Ecol Evol ; 13(2): e9772, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36778839

RESUMEN

Seed regeneration is a critical stage in the life histories of plants, affecting species' abilities to maintain local populations, evolve, and disperse to new sites. In this study, we test for local adaptations to drought in germination and seedling growth of two alpine forbs with contrasting habitat preferences: the alpine generalist Veronica alpina and the snowbed specialist Sibbaldia procumbens. We sampled seeds of each species from four populations spanning a precipitation gradient from 1200 to 3400 mm/year in western Norway. In a growth chamber experiment, we germinated seeds from each population at 10 different water potentials under controlled light and temperature conditions. Drought led to lower germination percentage in both species, and additionally, slower germination, and more investment in roots for V. alpina. These responses varied along the precipitation gradient. Seeds from the driest populations had higher germination percentage, shorter time to germination, and higher investments in the roots under drought conditions than the seeds from the wettest populations - suggesting local adaption to drought. The snowbed specialist, S. procumbens, had lower germination percentages under drought, but otherwise did not respond to drought in ways that indicate physiological or morphological adaptions to drought. S. procumbens germination also did not vary systematically with precipitation of the source site, but heavier-seeded populations germinated to higher rates and tolerated drought better. Our study is the first to test drought effects on seed regeneration in alpine plants populations from high-precipitation regions. We found evidence that germination and seedling traits may show adaptation to drought even in populations from wet habitats. Our results also indicate that alpine generalists might be more adapted to drought and show more local adaptations in drought responses than snowbed specialists.

10.
Trends Ecol Evol ; 38(3): 228-237, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36435672

RESUMEN

Scaling approaches in ecology assume that traits are the main attributes by which organisms influence ecosystem functioning. However, several recent empirical papers have found only weak links between traits and ecosystem functioning, questioning the usefulness of trait-based ecology (TBE). We argue that these studies often suffer from one or more widespread misconceptions. Specifically, these studies often (i) conflict with the conceptual foundations of TBE, (ii) lack theory- or hypothesis-driven selection and use of traits, (iii) tend to ignore intraspecific variation, and (iv) use experimental or study designs that are not well suited to make strong tests of TBE assumptions. Addressing these aspects could significantly improve our ability to scale from traits to ecosystem functioning.


Asunto(s)
Ecología , Ecosistema , Fenotipo , Biodiversidad
11.
PLoS One ; 17(12): e0278339, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36542605

RESUMEN

The Open Science (OS) movement is rapidly gaining traction among policy-makers, research funders, scientific journals and individual scientists. Despite these tendencies, the pace of implementing OS throughout the scientific process and across the scientific community remains slow. Thus, a better understanding of the conditions that affect OS engagement, and in particular, of how practitioners learn, use, conduct and share research openly can guide those seeking to implement OS more broadly. We surveyed participants at an OS workshop hosted by the Living Norway Ecological Data Network in 2020 to learn how they perceived OS and its importance in their research, supervision and teaching. Further, we wanted to know what OS practices they had encountered in their education and what they saw as hindering or helping their engagement with OS. The survey contained scaled-response and open-ended questions, allowing for a mixed-methods approach. We obtained survey responses from 60 out of 128 workshop participants (47%). Responses indicated that usage and sharing of open data and code, as well as open access publication, were the most frequent OS practices. Only a minority of respondents reported having encountered OS in their formal education. A majority also viewed OS as less important in their teaching than in their research and supervisory roles. The respondents' suggestions for what would facilitate greater OS engagement in the future included knowledge, guidelines, and resources, but also social and structural support. These are aspects that could be strengthened by promoting explicit implementation of OS practices in higher education and by nurturing a more inclusive and equitable OS culture. We argue that incorporating OS in teaching and learning of science can yield substantial benefits to the research community, student learning, and ultimately, to the wider societal objectives of science and higher education.


Asunto(s)
Aprendizaje , Humanos , Encuestas y Cuestionarios , Noruega
12.
Sci Data ; 9(1): 451, 2022 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-35902592

RESUMEN

Plant removal experiments allow assessment of the role of biotic interactions among species or functional groups in community assembly and ecosystem functioning. When replicated along climate gradients, they can assess changes in interactions among species or functional groups with climate. Across twelve sites in the Vestland Climate Grid (VCG) spanning 4 °C in growing season temperature and 2000 mm in mean annual precipitation across boreal and alpine regions of Western Norway, we conducted a fully factorial plant functional group removal experiment (graminoids, forbs, bryophytes). Over six years, we recorded biomass removed, soil microclimate, plant community composition and structure, seedling recruitment, ecosystem carbon fluxes, and reflectance in 384 experimental and control plots. The dataset consists of 5,412 biomass records, 360 species-level biomass records, 1,084,970 soil temperature records, 4,771 soil moisture records, 17,181 plant records covering 206 taxa, 16,656 seedling records, 3,696 ecosystem carbon flux measurements, and 1,244 reflectance measurements. The data can be combined with longer-term climate data and plant population, community, ecosystem, and functional trait data collected within the VCG.


Asunto(s)
Ecosistema , Pradera , Biodiversidad , Biomasa , Carbono , Cambio Climático , Plantas , Suelo/química
13.
Front Plant Sci ; 12: 659479, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34079569

RESUMEN

Filing gaps in our understanding of species' abilities to adapt to novel climates is a key challenge for predicting future range shifts and biodiversity loss. Key knowledge gaps are related to the potential for evolutionary rescue in response to climate, especially in long-lived clonally reproducing species. We illustrate a novel approach to assess the potential for evolutionary rescue using a combination of reciprocal transplant experiment in the field to assess performance under a changing climate and independent growth chamber assays to assess growth- and physiology-related plant trait maxima and plasticities of the same clones. We use a clonal grass, Festuca rubra, as a model species. We propagated individual clones and used them in a transplant experiment across broad-scale temperature and precipitation gradients, simulating the projected direction of climate change in the region. Independent information on trait maxima and plasticities of the same clones was obtained by cultivating them in four growth chambers representing climate extremes. Plant survival was affected by interaction between plant traits and climate change, with both trait plasticities and maxima being important for adaptation to novel climates. Key traits include plasticity in extravaginal ramets, aboveground biomass, and osmotic potential. The direction of selection in response to a given climatic change detected in this study mostly contradicted the natural trait clines indicating that short-term selection pressure as identified here does not match long-term selection outcomes. Long-lived clonal species exposed to different climatic changes are subjected to consistent selection pressures on key traits, a necessary condition for adaptation to novel conditions. This points to evolutionary rescue as an important mechanism for dealing with climate change in these species. Our experimental approach may be applied also in other model systems broadening our understanding of evolutionary rescue. Such knowledge cannot be easily deduced from observing the existing field clines.

14.
Am J Bot ; 108(5): 798-810, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33988866

RESUMEN

PREMISE: Despite the existence of many studies on the responses of plant species to climate change, there is a knowledge gap on how specific climatic factors and their interactions regulate seed germination in alpine species. This understanding is complicated by the interplay between responses of seeds to the environment experienced during germination, the environment experienced by the maternal plant during seed development and genetic adaptations of the maternal plant to its environment of origin. METHODS: The study species (Anthoxanthum alpinum, A. odoratum) originated from localities with factorial combinations of temperature and precipitation. Seed germination was tested in conditions simulating the extreme ends of the current field conditions and a climate change scenario. We compared the performance of field-collected seeds with that of garden-collected seeds. RESULTS: A change to warmer and wetter conditions resulted in the highest germination of A. alpinum, while A. odoratum germinated the most in colder temperature and with home moisture. The maternal environment did have an impact on plant performance of the study species. Field-collected seeds of A. alpinum tolerated warmer conditions better than those from the experimental garden. CONCLUSIONS: The results demonstrate how knowledge of responses to climate change can increase our ability to understand and predict the fate of alpine species. Studies that aim to understand the germination requirements of seeds under future climates should use experimental designs allowing the separation of genetic differentiation, plasticity and maternal effects and their interactions, since all these mechanisms play an important role in driving species' germination patterns.


Asunto(s)
Germinación , Latencia en las Plantas , Herencia Materna , Poaceae , Semillas , Temperatura
15.
Ecol Evol ; 11(8): 3577-3587, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33898010

RESUMEN

As Open Science practices become more commonplace, there is a need for the next generation of scientists to be well versed in these aspects of scientific research. Yet, many training opportunities for early career researchers (ECRs) could better emphasize or integrate Open Science elements. Field courses provide opportunities for ECRs to apply theoretical knowledge, practice new methodological approaches, and gain an appreciation for the challenges of real-life research, and could provide an excellent platform for integrating training in Open Science practices. Our recent experience, as primarily ECRs engaged in a field course interrupted by COVID-19, led us to reflect on the potential to enhance learning outcomes in field courses by integrating Open Science practices and online learning components. Specifically, we highlight the opportunity for field courses to align teaching activities with the recent developments and trends in how we conduct research, including training in: publishing registered reports, collecting data using standardized methods, adopting high-quality data documentation, managing data through reproducible workflows, and sharing and publishing data through appropriate channels. We also discuss how field courses can use online tools to optimize time in the field, develop open access resources, and cultivate collaborations. By integrating these elements, we suggest that the next generation of field courses will offer excellent arenas for participants to adopt Open Science practices.

16.
Ecol Evol ; 11(8): 3588-3596, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33898011

RESUMEN

The COVID-19 crisis has forced researchers in Ecology to change the way we work almost overnight. Nonetheless, the pandemic has provided us with several novel components for a new way of conducting science. In this perspective piece, we summarize eight central insights that are helping us, as early career researchers, navigate the uncertainties, fears, and challenges of advancing science during the COVID-19 pandemic. We highlight how innovative, collaborative, and often Open Science-driven developments that have arisen from this crisis can form a blueprint for a community reinvention in academia. Our insights include personal approaches to managing our new reality, maintaining capacity to focus and resilience in our projects, and a variety of tools that facilitate remote collaboration. We also highlight how, at a community level, we can take advantage of online communication platforms for gaining accessibility to conferences and meetings, and for maintaining research networks and community engagement while promoting a more diverse and inclusive community. Overall, we are confident that these practices can support a more inclusive and kinder scientific culture for the longer term.

17.
Nat Ecol Evol ; 5(4): 458-467, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33633373

RESUMEN

A fundamental assumption in trait-based ecology is that relationships between traits and environmental conditions are globally consistent. We use field-quantified microclimate and soil data to explore if trait-environment relationships are generalizable across plant communities and spatial scales. We collected data from 6,720 plots and 217 species across four distinct tundra regions from both hemispheres. We combined these data with over 76,000 database trait records to relate local plant community trait composition to broad gradients of key environmental drivers: soil moisture, soil temperature, soil pH and potential solar radiation. Results revealed strong, consistent trait-environment relationships across Arctic and Antarctic regions. This indicates that the detected relationships are transferable between tundra plant communities also when fine-scale environmental heterogeneity is accounted for, and that variation in local conditions heavily influences both structural and leaf economic traits. Our results strengthen the biological and mechanistic basis for climate change impact predictions of vulnerable high-latitude ecosystems.


Asunto(s)
Ecosistema , Tundra , Regiones Antárticas , Regiones Árticas , Plantas
18.
Glob Chang Biol ; 27(10): 2088-2101, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33511713

RESUMEN

Context-dependencies in species' responses to the same climate change frustrate attempts to generalize and make predictions based on experimental and observational approaches in biodiversity science. Here, we propose predictability may be enhanced by explicitly incorporating macroecological context into analyses of species' responses to climate manipulations. We combined vascular plant species' responses to an 8-year, 12-site turf transplant climate change experiment set in southwestern Norway with climate niche data from the observed 151 species. We used the difference between a species' mean climate across their range and climate conditions at the transplant site ("climate differences") to predict colonization probability, extinction probability, and change in abundance of a species at a site. In analyses across species that ignore species-specific patterns, colonization success increased as species' distribution optima were increasingly warmer than the experimental target site. Extinction probability increased as species' distribution optima were increasingly colder than the target site. These patterns were reflected in change in abundance analyses. We found weak responses to increased precipitation in these oceanic climates. Climate differences were better predictors of species' responses to climate manipulations than range size. Interestingly, similar patterns were found when analyses focused on variation in species-specific responses across sites. These results provide an experimental underpinning to observational studies that report thermophilization of communities and suggest that space-for-time substitutions may be valid for predicting species' responses to climate warming, given other conditions are accounted for (e.g., soil nutrients). Finally, we suggest that this method of putting climate change experiments into macroecological context has the potential to generalize and predict species' responses to climate manipulations globally.


Asunto(s)
Biodiversidad , Cambio Climático , Noruega , Suelo , Especificidad de la Especie
19.
Proc Natl Acad Sci U S A ; 117(39): 24345-24351, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32900958

RESUMEN

The stability of ecological communities is critical for the stable provisioning of ecosystem services, such as food and forage production, carbon sequestration, and soil fertility. Greater biodiversity is expected to enhance stability across years by decreasing synchrony among species, but the drivers of stability in nature remain poorly resolved. Our analysis of time series from 79 datasets across the world showed that stability was associated more strongly with the degree of synchrony among dominant species than with species richness. The relatively weak influence of species richness is consistent with theory predicting that the effect of richness on stability weakens when synchrony is higher than expected under random fluctuations, which was the case in most communities. Land management, nutrient addition, and climate change treatments had relatively weak and varying effects on stability, modifying how species richness, synchrony, and stability interact. Our results demonstrate the prevalence of biotic drivers on ecosystem stability, with the potential for environmental drivers to alter the intricate relationship among richness, synchrony, and stability.


Asunto(s)
Plantas/clasificación , Secuestro de Carbono , Cambio Climático , Ecosistema , Desarrollo de la Planta , Plantas/metabolismo , Suelo/química
20.
Proc Natl Acad Sci U S A ; 117(37): 22858-22865, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32868426

RESUMEN

Generality in understanding biodiversity responses to climate change has been hampered by substantial variation in the rates and even directions of response to a given change in climate. We propose that such context dependencies can be clarified by rescaling climate gradients in terms of the underlying biological processes, with biotic interactions as a particularly important process. We tested this rescaling approach in a replicated field experiment where entire montane grassland communities were transplanted in the direction of expected temperature and/or precipitation change. In line with earlier work, we found considerable variation across sites in community dynamics in response to climate change. However, these complex context dependencies could be substantially reduced or eliminated by rescaling climate drivers in terms of proxies of plant-plant interactions. Specifically, bryophytes limited colonization by new species into local communities, whereas the cover of those colonists, along with bryophytes, were the primary drivers of local extinctions. These specific interactions are relatively understudied, suggesting important directions for future work in similar systems. More generally, the success of our approach in explaining and simplifying landscape-level variation in climate change responses suggests that developing and testing proxies for relevant underlying processes could be a fruitful direction for building more general models of biodiversity response to climate change.


Asunto(s)
Biodiversidad , Cambio Climático , Ecosistema , Pradera , Plantas , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...